

Adding Value through Risk Management in P&C

13rd September 2012, Milan – SIFA/FAC

Alessandro Carrato (*Risk Management Dept*), Luigi Lotti (*Risk Management Dept*)

Solvency 2 ORSA: Three Approaches

Pillar 1 is main focus as it is tangible and immediate.

Minimum compliance with ORSA.

Doing ERM because regulation requires it.

N I A

Not seen as a compliance exercise.

See ORSA as a proxy for a holistic ERM framework that benefits the insurer and adds value.

Not a function of firm size – more a function of senior management philosophy.

Pillar 1 Focussed

Compliance Focussed

Added Value Focussed

Agenda

10.45-12.45

- 1. Introduction
- 2. P&C Insurance Risks
 - I. Reserve Risk
 - II. Premium Risk
- 3. Risk Capital Aggregation and Allocation (Theoretical)

12.45-13.45

Lunch time ©

13.45-16.00

- 4. Risk Capital Aggregation and Allocation (Practical)
- 5. Risk Based Pricing
- 6. Q&A Session

Contents

1 Introduction

- 2 P&C Insurance Risks
 - I. Reserve Risk
 - II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Laws and Regulations: Solvency II

- Solvency II is the major European project on insurance legislation for the next few years. Solvency II will lead to a completely different Supervisory System as well as enhanced use of Risk capital models and Risk management systems.
- Solvency II is the new proposed EU legislation which will govern the capital requirements of insurance companies.
- The current Solvency Framework, Solvency I, was introduced in the early 70's and defined capital requirements by specifying simple, factor-based solvency margins, which did not always reflect the true risks in a given portfolio of insurance business.
- Solvency II is an opportunity to improve insurance regulation and supervision, introducing a risk based economic approach.

Main goals of Solvency II

- Risk based Solvency II calculations: incentive for integrated risk management
- Convergence issues:
 - to Basel II in Europe
 - of supervisory approaches
- Market consistent valuation of assets and liabilities
- Group Supervision
- Increased transparency concerning supervisory practice and the business model of insurance companies
- Common market place level playing field

Supervisory reporting

Solvency II: a Three-Pillar Structure

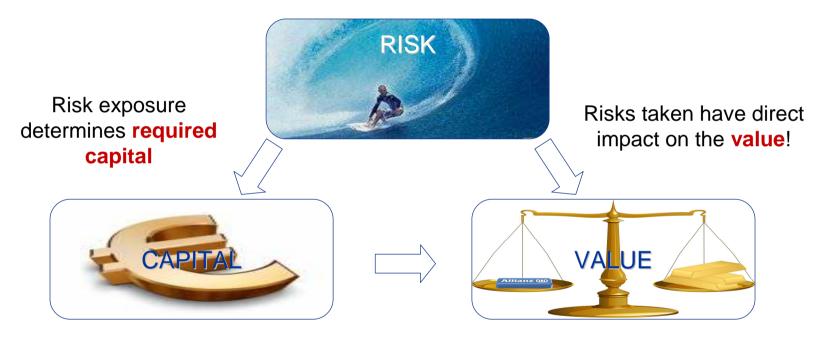
There are a lot of interdependencies between the different tasks within the different pillars

ORSA

Use Test

Purpose of the Risk Management

Putting all risks of a company on the scales ...

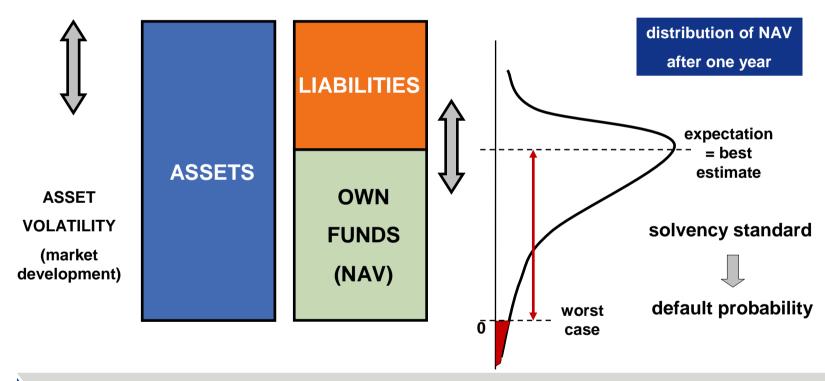


Capital consumption comes at a **cost** (reduces the value)

... the idea is to correctly balance them, in order to create value!!

Risk Capital

SCR.1.9 The SCR (Solvency Capital Requirement) should correspond to the **Value-at-Risk** of the **basic own funds** of an insurance undertaking subject to a confidence level of **99.5**% over a **one-year period**



So, everything that affects the own funds in the next 12 months should be considered as a **risk**

Allianz (II)

Risk Capital

Step 1: Assessment of nature, scale and complexity of risks

SCR.1.19 The insurer should assess the **nature**, **scale** and **complexity** of the risks [...]

Step 2: Assessment of the model error

SCR.1.21 Where simplified approaches are used to calculate the SCR, this could introduce additional estimation uncertainty (or model error) [...]

SCR.1.23 Undertaking are not required to quantify the degree of model error in quantitative terms [...] Instead, it is sufficient if there is reasonable assurance that the model error included in the simplifications is immaterial

All the uncertainty – except of model error - should be considered in quantitative terms. This means that parameter and process error are in scope.

Risk Capital

Being the risk represented by the uncertainty of the future NAV development, this can be split into **several categories**, corresponding to the **events** giving place to the **possible NAV variations**

Risks Universe Market Credit Pecance Life ance Quisiness Operational Other Premium Counterparty Equity Mortality Cost Operational Reputational **Non Cat** Premium Real Estate Longevity Compliance Strategic Lapse **Nat Cat** Premium Man **Financial** Foreign Exch. Disability Legal MadeCat Reporting Interest Rate Reserve Catastrophe Liquidity Volatility Capital Adequacy Solvency Risk Credit Spread

Contents

1 Introduction

2 P&C Insurance Risks

- I. Reserve Risk
- II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Reserve Risk

SCR.9.11 Reserve risk results from **fluctuations** in the **timing** and **amount** of **claim settlement**



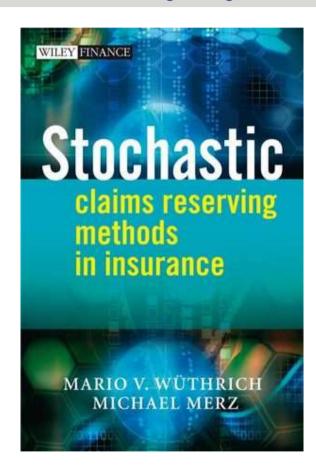
$$CDR_{\infty} = R_0 - \sum_{\text{future CY } t} P(t)$$

$$VAR(CDR_{\infty}) = VAR\left(\sum_{\text{future CY } t} P(t)\right)$$

In order words, it's like if we simulate the fact we are at the end of the reserve run-off and we observe how wrong we were at the instant of evaluation

Reserve Risk

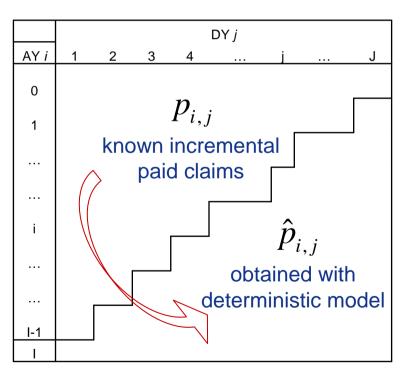
Tons of studies in actuarial literature regarding the Stochastic Loss Reserving

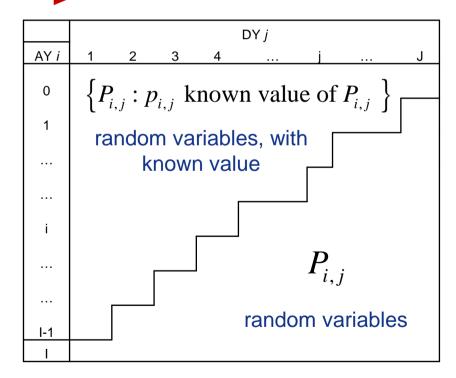


Reserve Risk – The underlying models

There is a "change of perspective" compared with the past

DETERMINISTIC MODELS STOCHASTIC MODELS





Reserve Risk – The underlying models

In order to use stochastic model, you need to fix stochastic assumptions

Assumptions		Example
PARAMETRIC	Give the parametric distribution family of $P_{i,j}$	GLM
SEMIPARAMETRIC	Give only some assumptions on some moments	ODP / MACK

Usually the market is now considering **mainly** two stochastic models (ODP model & Mack model), and they are also generally accepted by Solvency II directive

But ... what about the model error?

Reserve Risk – The underlying models

ODP Model

Calculate *Pearson Residuals* on **Incremental Paid(i,j)** Triangle

Estimation of future payments via **bootstrapping**

Adding process error using a Gamma (or other) distribution

Mack Model

Calculate *Pearson Residuals* on **DFM(i,j)** Factors

Estimation of future payments via recursive bootstrapping

Adding process error using a Gamma (or other) distribution

To do a correct bootstrap exercise, an analysis on residuals must be performed (they must be i.i.d) => **Residuals Analysis**

Starting

point

Allowance for

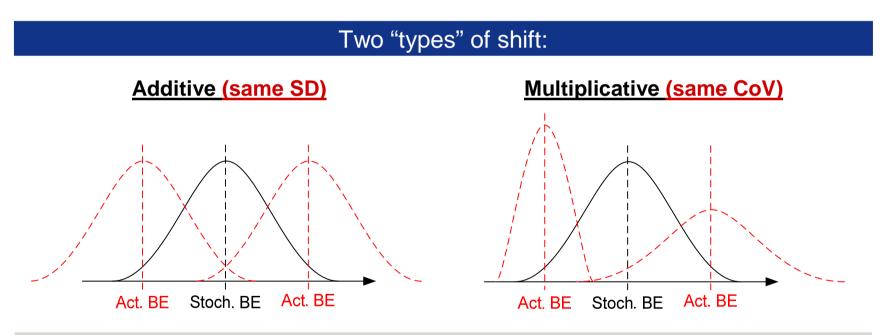
Parameter Error

Allowance for

Process Error

Reserve Risk - Shift to actuarial reserves

The implied expected value when assessing reserving uncertainty **does not necessarily correspond** to the best estimate reserve set by the Reserving Actuary (often based on different deterministic methods). However, we are still interested in the predictive distribution around the best estimate selected by the Reserving Actuary.



Generally, the common idea is to stay always on the safe side choosing a prudential approach (e.g. if ABE > BE then **multiplicative**, else **additive**)

Reserve Risk - Where are the problems?

Let's give a look again to the definition of SCR

SCR.1.9 The SCR (Solvency Capital Requirement) should correspond to the **Value-at-Risk** of the **basic own funds** of an insurance undertaking subject to a confidence level of 99.5% over a **one-year period**

So, in 2008, the IAIS(*) published the following interpretation:

"[…]

- Shock period: the period over which a shock is applied to a risk;
- **Effect horizon**: the period over which the shock that is applied to a risk will impact the insurer

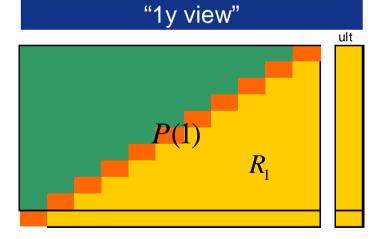
In essence, at the end of the shock period, capital has to be sufficient so that assets cover the technical provision (...) **re-determined at the end of the shock period**. The re-determination of the technical provisions would allow for the impact of the shock on the technical provisions over the full time horizon of the policy obligations"

All the models seen until now consider a "shock" until the full reserve run-off (the so called "Ultimate View")

"Ultimate view" P(t), for future CY t

$$CDR_{\infty} = R_0 - \sum_{\text{future CY } t} P(t)$$

$$VAR(CDR_{\infty}) = VAR\left(\sum_{\text{future CY } t} P(t)\right)$$



$$CDR_1 = R_0 - P(1) - R_1$$

$$VAR(CDR_1) = VAR(P(1) + R_1)$$

The "1-yr view" concept was born!!

Reserve Risk - The "1yr View"

From 2008, only two main studies have been performed on the topic

Merz, Wuthrich (June 2008) - Modelling the Claims Development Result for Solvency Purposes (ASTIN)

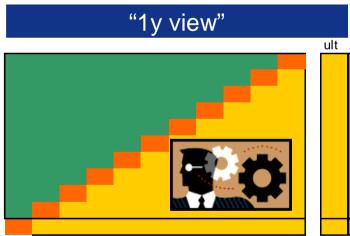
- Based on Mack (1993) assumptions + additional assumptions (martingale process)
- No tails considered
- Closed form for MSEP calculation (no information on the tails)
- Consider both a "perspective" and retrospective view

Starting from QIS5 it has been officially recognized for the calculation of the USP (Undertaking Specific Parameters), to be used thru a credibility approach with the market parameters

Reserve Risk - The "1yr View"

Ohlsson, Esbjorn, Lauzeningks (2008) - The one-year non-life insurance risk

- Gives only the general idea on how the one-year view should be evaluated (i.e. implementing the **re-reserving algorithm** the so called "actuary in the box")
- If we consider as re-reserving algorithm only the CL, we get the previous Merz-Wuthrich approach



This approach is particular interesting for the internal model implementation; anyway, in these last years, not many studies in actuarial literature have been done: **there are still a lot of open issues to be deepen**

Reserve Risk - In a nutshell

The "**Ultimate View**" it has been commonly understood and accepted, but – practically – relies still too much to "CL-centered" models

...and **model error** should be kept under control ("the market does so" will be no more sufficient)!!

On the contrary, "1yr View" has still lot of interpretational issues and more studies have to be performed

Anyway, at the moment, the main "quantitative" issues are more or less solved and received a positive feedback from QIS5 exercise

Contents

1 Introduction

2 P&C Insurance Risks

- I. Reserve Risk
- II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Premium Risk

SCR 9.9. Premium risk results from fluctuations in the timing, frequency and severity of insured events. **Premium risk** relates to **policies to be written** (**including renewals**) during the period, and **to unexpired risks on existing contracts**. Premium risk includes the risk that **premium provisions** turn out to be **insufficient** to compensate claims or need to be increased.

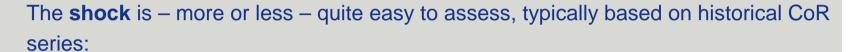
It's an "atypical" risk, since it involves mainly P&L quantities (i.e. the future profit/losses) other than b/s figures (i.e. the Unearned Premium Reserve)

Basically, it's a shock on the combined ratio for a given volume measure

$$RC = \left(CoR_{WC(99.5\%)} - CoR_{BE}\right) \cdot V_{(prem, lob)}$$

Premium Risk – Evaluating the "CoR shock"

$$\left(CoR_{WC(99.5\%)} - CoR_{BE}\right)$$



- What about Premium Cycle uncertainty? It's very difficult to assess its uncertainty
- Compared to Reserve Risk, are we considering an "ultimate" or a "1-yr view"?
- And should we consider a correlation between losses and premiums "embedded" in the CoR?
- How to evaluate the impact of the Reinsurance structure?

Internal models often do a complete stochastic modeling (via a Montecarlo approach), useful also for other purposes (see Reinsurance Optimisation) ... BUT ...

Premium Risk – The volume measure

... the volume measure has been reviewed many times ...

QIS5

$$V_{(prem,lob)} = \max\left(P_{lob}^{t,written}, P_{lob}^{t,earned}, P_{lob}^{t-1,written}\right) + P_{lob}^{PP}$$

 P_{lob}^{PP}

Present value of net premiums of **existing contracts** which are expected to be earned after the following year for each LoBs

$$V_{(prem,s)} = \max(P_s; P_{(last,s)}) + FP_{(existing,s)} + FP_{(future,s)}$$

 $FP_{(existing,s)}$

Denotes the expected present value of premiums to be earned by the insurance undertaking in the segment's after the following 12 months for existing contracts

 $FP_{(future,s)}$

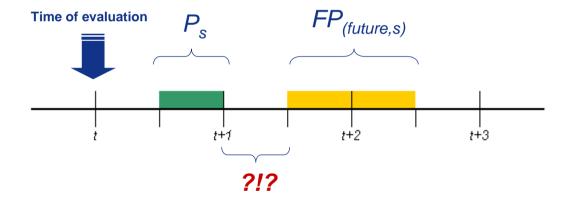
denotes the expected present value of premiums to be earned by the insurance undertaking in the segment s for contracts where the initial recognition date falls in the following 12 months but excluding the premiums to be earned during the 12 months after the initial recognition date

Premium Risk – The volume measure

... and it still have some issues ©

Take for example a 2 years policy, with a single premium of 2.000€, that will incept in the middle of next year

The earnings of the contract as described the S2 volume measure are:



Reminder: FP_(future,s) denotes the expected present value of premiums to be earned by the insurance undertaking in the segment s for contracts where the initial recognition date falls in the following 12 months but excluding the premiums to be earned during the 12 months after the initial recognition date (it should say "after the next 12 months"!!!)

Premium Risk - In a nutshell

Still not clear the perimeter of the Premium Risk, but it's mainly related to earned premiums and UPR revaluation after one-year (why don't call this latter "Premium Reserve" Risk?)

Other minor issues due to Premium Cycle interpretation and assumptions to be considered ...

But the real problem regards **data quality and availability**: in the past data of future premiums have not been used in the balance sheet

Nat-Cat Risk – A quick overview

- "Natural catastrophe" ("Nat Cat") is a damaging event produced by nature elements followed by several single losses, involving a number of contracts (and then a number of contracting parties)
- The **extent** of a natural catastrophe depends on the force of the natural agent itself, but also on **man-made factors**, such as the quality of preventive measures adopted in the considered area, the technical building features, the maintenance level
- This risk includes:
 - Earthquakes (including seaquakes and tsunami)
 - Flood
 - Hail
 - Hurricane, storm, avalanches, snow and freeze

Usually, on a gross basis, the Nat-Cat risk "consume" a lot of capital ...

Contents

- 1 Introduction
- 2 P&C Insurance Risks
 - I. Reserve Risk
 - II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Risk Capital Aggregation

Basic setting

Suppose that the real-valued random variables $X_1,...,X_n$ represent profits and losses for different assets in a portfolio (or P&L of different risks). Let X denote the total profit/loss of the portfolio, i.e.

$$X = X_1 + ... + X_n = \sum_{i=1}^n X_i$$

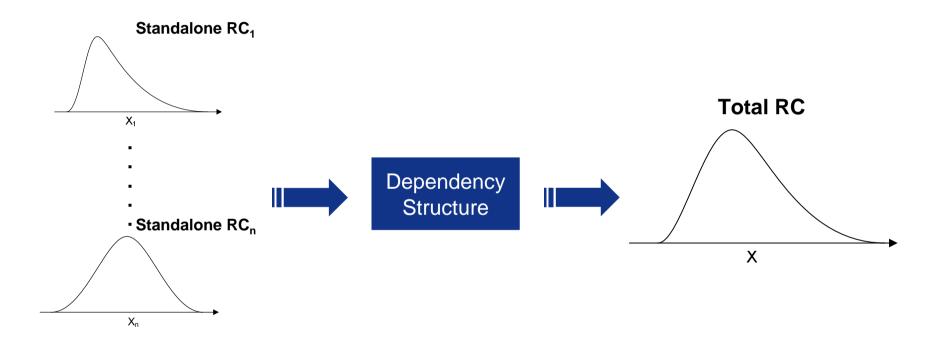
We can allow for some dynamics by introducing variables $u=(u_1,...,u_n)$, thus representing with u_i the amount of money invested in asset i:

$$X(u) = X(u_1,...,u_n) = \sum_{i=1}^{n} u_i X_i$$

Our aim is to model the total loss distribution as sum of different P&L sources, and for that we need to describe the dependence structure

Risk Capital Aggregation

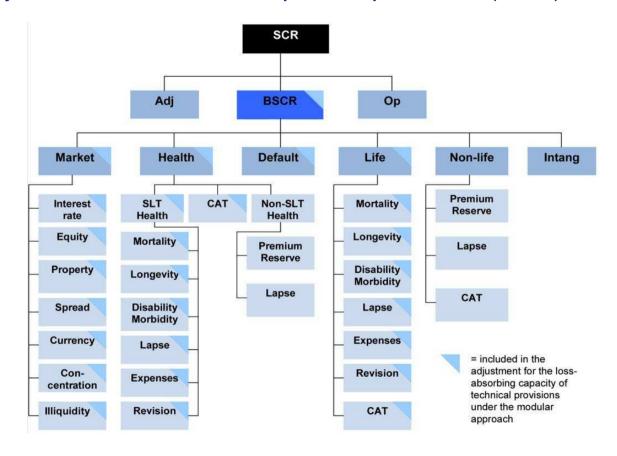
The idea of Risk Aggregation



We can calculate the standalone RC_i applying a **risk measure** ρ (.) to each $X_1, ..., X_n$. The total risk capital is calculated applying the same risk measure to the distribution function of X.

Solvency 2 point of view

Solvency 2 standard formula capital requirement (SCR):



Inside some of the risk modules we also need to aggregate between LoBs

Solvency 2 point of view

Solvency 2 formula for Risk Capital Aggregation

$$BSCR = \sqrt{\sum_{i,j} Corr_{i,j} \cdot SCR_i \cdot SCR_j}$$

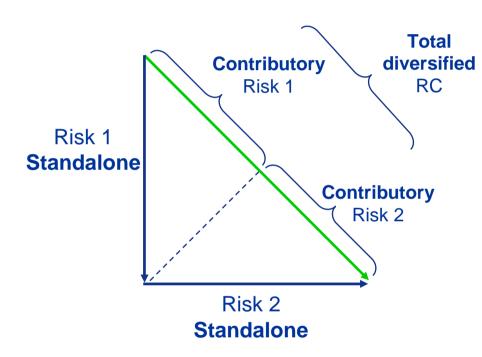
Note: the same logic applies for the aggregation of sub-modules into the main risk modules, and for the aggregation of LoBs inside sub-modules

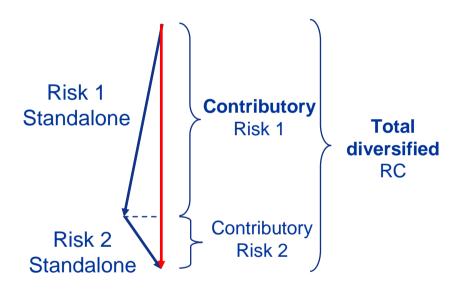
The proposed aggregation is entirely based on linear correlations... ... is this ok?

The concept of linear aggregation

Not Correlated $(\rho = 0)$

Correlated $(\rho > 0)$





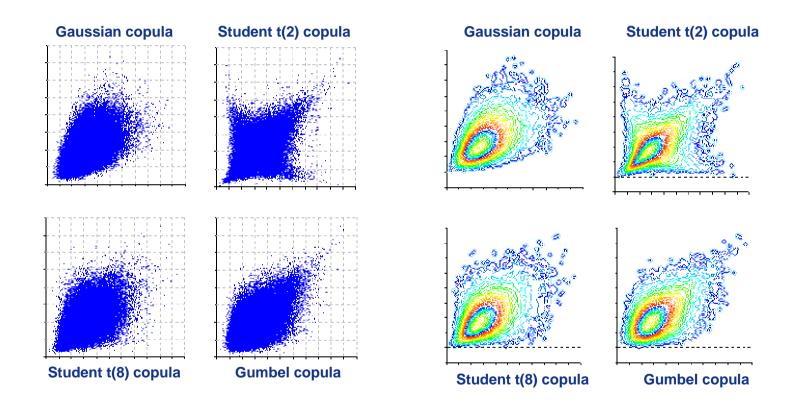
- The **length** of the vectors is the value of the **RC standalone**
- The **angle** represents the **linear correlation** (90°= not correlated, 180°= full correlated)

Some of the problems of using linear correlations...

- 1. The possible values of the linear correlation coefficient ρ could be restricted to a sub interval of [-1,1]
- 2. The marginal distributions needs to have finite variance
- 3. The marginal distributions and the correlation coefficient are not enough to uniquely represent the joint distribution.
- 4. If we take two univariate distributions F1, F2 and a correlation coefficient ρ from [-1,1], it is not always possible to build a joint distribution function F with marginals F1, F2 and correlation coefficient ρ.
- 5. The linear correlation coefficient p depends not only from the copula, but also from the marginals (other correlation indexes are more appropriate, e.g. the spearman and kendall rank correlation indexes)

"The devil is in the tails"

(Donnelly, Embrechts, 2010, Astin bulletin)



Starting with the same marginals and the same correlation coefficient, we can obtain very different joint distributions, especially in the tails...

What really is a copula?

Copula definition: a *d*-dimensional copula $C(u)=C(u_1,...,u_d)$ is a cumulative distribution function over $[0,1]^d$ with uniform marginals in [0,1], i.e. C is such as $C:[0,1]^d \to [0,1]$

Sklar's Theorem: given a joint cumulative distribution function F with marginals F_1, \ldots, F_d , there always exists a copula C that links the given marginals with the joint distribution F. Besides, if the marginals are all continuous the copula is unique.

for the "proper" definition and theorem see, for example: McNeil, Frey, Embrechts (2005) "Quantitative risk management"

The copula is basically a function that links the marginals to the joint distribution, and includes all the information about the dependence structure

Some well-known copulas...

Gaussian copula

$$C_P^{Ga}(\mathbf{u}) = \Pr[\Phi(X_1) \le u_1, ..., \Phi(X_d) \le u_d] = \Phi_P(\Phi^{-1}(u_1), ..., \Phi^{-1}(u_d))$$

The Gaussian copula implies asymptotic independence in the tails

Student-t copula

$$C_{P,\nu}^{t}(u_{1},...,u_{d}) = T_{P,\nu}(t_{\nu}^{-1}(u_{1}),...,t_{\nu}^{-1}(u_{d}))$$

This copula needs one more parameter (d.o.f.), but it is now possible to introduce asymptotic tail dependence

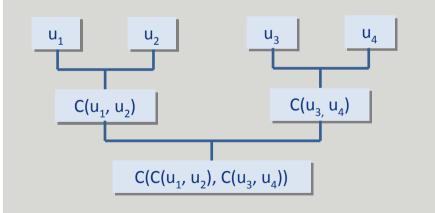
Some well-known copulas...

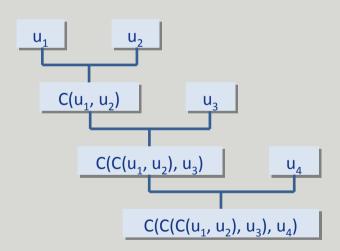
Archimedean copulas (Gumbel, Clayton, Frank, etc)

$$C(u_1,...,u_d) = \phi^{-1}(\phi(u_1) + ... + \phi(u_d))$$

Those copulas are heavyer on the tails, but they are also a little restrictive since the dependence structure is described by only one parameter

Hierarchical Archimedean copulas





Very difficult to parameterize (nesting/estimation) and to simulate from

Alternative approaches	
1. A simpler model (e.g. linear correlations) is not detailed enough	X
2. Directly estimating the joint distribution is much more difficult	X
3. Both simulating directly from the joint distribution or calculating analytically the convolution is a very difficult and computationally demanding	X

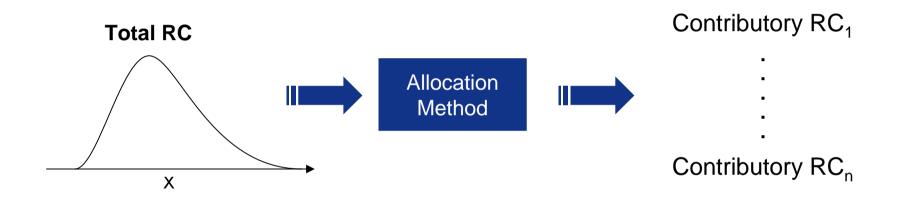
PROs of the Copula	
1. We can separate the analysis of the marginals from the analysis of the dependency structure	√
2. To estimate the copula parameters we can use the usual estimation techniques	√
3. For the simulation we can use a simple reordering algorithm	\checkmark

Contents

- 1 Introduction
- 2 P&C Insurance Risks
 - I. Reserve Risk
 - II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Introduction

The idea of Capital Reallocation



Once we have the total risk capital (that takes into account dependencies and diversification effect), we want to re-allocate this figure to the single risks.

One of the main aims of Capital Reallocation is to compute the Cost of Capital relative to single risks/LoBs, in order to **determine risk adjusted profitability of single segments.**

Risk Measures

Definition of Risk Measure

In actuarial literature, a risk measure is defined as a mapping ρ from a set L of real-valued random variables defined on a probability space (Ω, ζ, λ) to the real line R:

$$ho:L o\mathbb{R}$$
 i.e. $ho:X\in L o
ho(X)$

Usually, if X represents a random return, from an economic point of view we can see $\rho(X)$ as the (positive) **amount of capital** set aside in order to make X an acceptable risk (*)

(*) Generally the concept of setting aside a Risk Capital to hedge the risks is a direct consequence of the "translation invariance" property (see slide 9), i.e. setting aside a Risk Capital that equals $\rho(X)$ makes the total risk measure go to zero.

Risk Measures

Definition of Coherent Risk Measure

A risk measure ρ is called *coherent* if it satisfies the following properties ([1] Artz et. al. (1999)):

- (i) Translation Invariance: $\rho(X + \alpha) = \rho(X) \alpha$, $\forall X \in L, \alpha \in \mathbb{R}$
- (ii) Subadditivity: $\rho(X+Y) \le \rho(X) + \rho(Y), \ \forall X, Y \in L$
- (iii) Positive Homogeneity: $\rho(\beta X) = \beta \rho(X), \ \forall X \in L, \beta \ge 0$
- (iv) Monotonicity: $\rho(X) \le \rho(Y)$, $\forall X, Y \in L$ with $X \ge Y \lambda$ -a.s.

These properties are desirable because they all have an interpretation that is logical from an economic point of view (e.g. without the Subadditivity, the risk measure can show anti-diversification)

Risk Measures

Some well-known Risk Measures:

- (i) Variance: $\rho_{\text{var}}(X) = \text{var}(X)$
- (ii) Standard deviation: $\rho_{sd}(X) = \sigma(X) = \sqrt{\text{var}(X)}$
- (iii) Value-at-Risk (VaR): $\rho_{VaR(\alpha)}(X) = -VaR_{(\alpha)}(X)$
- (iv) TVaR¹: $\rho_{TVaR(\alpha)}(X) = -E(X \mid X \le VaR_{(\alpha)}(X))$

Please note that in this case α is a 'left-side' number, e.g. 0.5% for Solvency II

Among these, only the TVaR is a **coherent** risk measures.

1. In our assumptions the underlying distribution is continuous, therefore the TVaR (also called Tail Conditional Expectation) is the same as the Expected Shortfall ([2] Acerbi, Tasche (2002)).

Definition of Allocation Method

We denote by M the set of risk measures. A capital allocation method Φ is a mapping

$$\Phi: M \times L^n \to \mathbb{R}^n, \quad (\rho, X_1, ..., X_n) \to \begin{pmatrix} \Phi_1(\rho, X_1, ..., X_n) \\ ... \\ \Phi_n(\rho, X_1, ..., X_n) \end{pmatrix}$$

Therefore, an allocation method is defined once we choose a **particular** form for the functional Φ .

From now on we will use the following notation:

- $\rho(X)$ for the risk capital allocated to the total portfolio
- $\rho(X_i)$ for the standalone risk capital allocated to the single risk
- $\rho(X_i|X)$ for the contributory risk capital reallocated to the single risk

Besides, we can briefly introduce the concept of Return On Risk Adjusted Capital (**RORAC**):

• related to the total (*):
$$RORAC(X) = \frac{E(X)}{RC_{TOT}} = \frac{\sum_{i=1}^{n} \mu_i}{\rho(X)}$$

• related to the single contribution (*): $RORAC(X_i) = \frac{E(X_i)}{RC_i} = \frac{\mu_i}{\rho(X_i \mid X)}$

(*) Please note that in this notation $\rho(X) = RC$, e.g. $\rho(X) = [-VaR_{\alpha}(X)] - E(X)$

"Definition" of **Coherent Allocation Method**, and economic reasons on why we should look for a coherent allocation method

(i) Full allocation property: $\sum_{i=1}^{n} \rho(X_i \mid X) = \rho(X).$

comment: it is obvious that we need the single contributory risk capitals to add up to the total risk capital. By the way, this condition is easy to obtain just by putting some constraints on the coefficients Φ_i

(ii) Diversifying allocation property: $\rho(X_i \mid X) \le \rho(X_i)$, i = 1,...,n

<u>comment</u>: we clearly want to take diversification into account when reallocating risk capital to the single risks/Lobs

(iii) RORAC compatibility property:

$$RORAC(X_i \mid X) > RORAC(X) \Rightarrow RORAC(X + hX_i) > RORAC(X)$$
 for all $h > 0$. $i = 1,...,n$

<u>comment</u>: without this property the reallocation process results could be economically odd

These properties are desirable because they all have an interpretation that is logical from an economic point of view. It is reasonable to look for allocation methods that verify them.

OSS: Generally speaking there is no reason to impose non-negative coefficients (e.g. to allow for hedging effects) (*)

(*) Please note that there is no allocation method that always verify the non-negativity, but we may need it if we want to use RAPM-type quotients (return/allocated capital); see [4] Denault (2001) for an insight on the non-negativity property for reallocation methods

Examples of Allocation Principles

- (i) Proportional: $\Phi_i^{P,\rho} = \rho(X_i) / \sum_{j=1}^n \rho(X_j)$
- (ii) Marginal Approach (or Merton & Perold): $\Phi_{i}^{MP,\rho} = \frac{\rho(X) \rho(X X_{i})}{\sum_{j=1}^{n} \left[\rho(X) \rho(X X_{j})\right]}$
- (iii) Euler Allocation (or Myers & Read): $\Phi_i^{Eu,\rho} = \frac{\partial \rho(X)}{\partial u_i} / \sum_{j=1}^n \frac{\partial \rho(X)}{\partial u_j}$

It is shown in the actuarial literature that only the Euler Allocation applied to a coherent risk measure can be a coherent allocation method

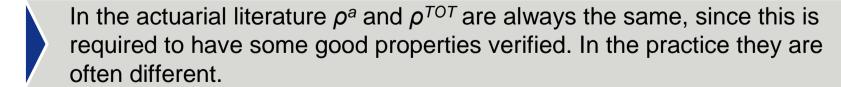
How to build a Capital Reallocation Approach

As we've seen, we can write:

$$RC_{i} = \Phi_{i} \cdot RC_{TOT} = \frac{\rho^{a}(X_{i} \mid X)}{\sum_{i=1}^{n} \rho^{a}(X_{i} \mid X)} \cdot \rho^{TOT}(X)$$

Therefore, to fully describe the allocation approach we need to define:

- Φ is the function that describes the allocation principle
- ρ^a is the risk measure used inside the functional Φ
- ρ^{TOT} is the risk measure used to obtain the total risk capital



"Standalone Approach"

Allocation principle (Φ)	Risk measure for re-allocation ($ ho^a$)	Risk measure for total RC ($ ho^{ extsf{TOT}}$)	
Proportional	Usually VaR or TVaR	Usually VaR or TVaR	

PRO

· Very easy to calculate

CONS

· Does not take into account intra-risks diversification benefit, and **this is true** for every risk measure we choose

"Marginal Approach"

Allocation principle (Φ)	Risk measure for re-allocation ($ ho^a$)	Risk measure for total RC ($ ho^{ extsf{TOT}}$)	
Marginal	Usually VaR	Usually VaR	
(Merton & Perold)	or TVaR	or TVaR	

PRO

· "What if" point of view

CONS

- · Computational demanding, we need the joint distribution of $(X X_i)$ for every i
- · For any risk measure, it is not a coherent allocation method ([11] Tasche (2007))

This method may be useful to analyse the impact of adding/removing one entire LoB, but it is not suited to reallocate the Cost of Capital

"Covariance Approach"

Allocation principle (Φ)	Risk measure for re-allocation ($ ho^a$)	Risk measure for total RC ($ ho^{ extsf{TOT}}$)
Euler (Myers & Read)	Standard deviation	Usually VaR or TVaR

This could be a coherent allocation method, but only if we use the **standard deviation** for **both** ρ^a and ρ^{TOT} . Please note that the standard deviation could be a coherent risk measure under more restrictive assumptions.

If we want to use the VaR or TVaR for computing the total Risk Capital, then this is not a coherent allocation method ([10] Tasche (2004), p.14)

"Decomp VaR Approach"

Allocation principle (Φ)	Risk measure for re-allocation ($ ho^a$)	Risk measure for total RC ($ ho^{ extsf{TOT}}$)	
Euler (Myers & Read)	VaR	Usually VaR or TVaR	

PRO

· Very easy to calculate

CONS

· Very unstable, and not a reliable measure of risk contributions

"VaR HD"

Allocation principle (Φ)	Risk measure for re-allocation ($ ho^a$)	Risk measure for total RC ($ ho^{ extsf{TOT}}$)	
Euler (Myers & Read)	VaR HD	Usually VaR (HD) or TVaR	

PRO

· "Decent" representation of risk contributions

CONS

· It is not a coherent capital allocation method, therefore it can sometimes give odds results

"Contribution to TVaR Approach"

Allocation principle (Φ)	Risk measure for re-allocation ($ ho^a$)	Risk measure for total RC ($ ho^{ extsf{TOT}}$)
Euler (Myers & Read)	TVaR	Usually VaR or TVaR

It's possible to prove that if we use the **TVaR to measure the total risk** capital and to reallocate, then we have a coherent allocation method with a coherent risk measure (*TVaR*) - ([10] Tasche (2004) and [11] Tasche (2007))

In fact, following this proposal we obtain:

$$RC_{i} = \Phi_{i} \cdot RC_{TOT} = \frac{TVaR_{\alpha}(X_{i} \mid X)}{\sum_{i=1}^{n} TVaR_{\alpha}(X_{i} \mid X)} \cdot TVaR_{\alpha}(X)$$

$$= \frac{E[X_i \mid X \ge VaR_{\alpha}(X)]}{\sum_{i=1}^n E[X_i \mid X \ge VaR_{\alpha}(X)]} \cdot E[X \mid X \ge VaR_{\alpha}(X)] = E[X_i \mid X \ge VaR_{\alpha}(X)]$$

$$RC_i = E[X_i \mid X \ge VaR_{\alpha}(X)]$$

PROs	
1. We use a coherent risk measure to calculate the total risk capital	√
2. We use a coherent capital allocation method	\checkmark
3. It is very easy to calculate the single contributions (see next)	\checkmark
4. it uses all the information from both the total distribution and the marginal distributions	√
5. It can be used for different economic purposes just by changing the α (i.e. if we want a risk management approach we can focus on the tails with α =0.5%, if we want a more "expected" approach we can set α =50%)	√

CONs	
It doesn't work for non-linear risks (e.g. Market Risks)	X
The TVaR requires at least 10'000 sims at the 99% confidence level to give stable results ([13] Yamai, Yoshiba (2007))	X

Contents

- 1 Introduction
- 2 P&C Insurance Risks
 - I. Reserve Risk
 - II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Reordering algorithm

Illustration based on a simple problem: $(X,Y) \sim C(F_X,F_Y)$

- 1. Fix $n \in \mathbb{N}$
- 2. Simulate independently

$$\begin{array}{cccc} & - & X_i \sim F_X \\ & - & Y_i \sim F_Y \\ & - & U_i = \left(U_i^1, U_i^2\right) \sim C \\ \\ \text{for } i = 1, \dots, n \end{array}$$

3. Construct "samples" of (X,Y) by merging the order statistics $X_{(i)}$ and $Y_{(i)}$ according to the observed joint ranks in the copula sample.

Let
$$n=4$$

- 1. Sample i.i.d. $X_i \sim F_X$,
- 2. Sample i.i.d. $Y_i \sim F_Y$, independent of the X_i
- 3. Sample i.i.d. $U_i \sim C$, $U_i \in \left[0,1\right]^2$, independent of the X_i and Y_i

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$
sample	rank	sample	rank	sample rank
3.1	2	67.9	4	(0.4, 0.7) $(2,3)$
6.3	4	22.8	2	(0.5, 0.9) $(3,4)$
1.4	1	12.2	1	(0.1, 0.3) (1,1)
5.9	3	43.7	3	(0.7, 0.4) (4,2)
				The state of the s

Let
$$n=4$$

- 1. Sample i.i.d. $X_i \sim F_X$,
- 2. Sample i.i.d. $Y_i \sim F_Y$, independent of the X_i
- 3. Sample i.i.d. $U_i \sim C$, $U_i \in \left[0,1\right]^2$, independent of the X_i and Y_i

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) (2,3)	
6.3	4	22.8	2	(0.5, 0.9) (3,4)	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	

Let
$$n=4$$

- 1. Sample i.i.d. $X_i \sim F_X$,
- 2. Sample i.i.d. $Y_i \sim F_Y$, independent of the X_i
- 3. Sample i.i.d. $U_i \sim C$, $U_i \in [0,1]^2$, independent of the X_i and Y_i

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) $(2,3)$	
6.3	4	22.8	2	(0.5, 0.9) $(3,4)$	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	

Let
$$n=4$$

- 1. Sample i.i.d. $X_i \sim F_X$,
- 2. Sample i.i.d. $Y_i \sim F_Y$, independent of the X_i
- 3. Sample i.i.d. $U_i \sim C$, $U_i \in [0,1]^2$, independent of the X_i and Y_i

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) $(2,3)$	
6.3	4	22.8	2	(0.5, 0.9) $(3,4)$	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	

Let
$$n=4$$

- 1. Sample i.i.d. $X_i \sim F_X$,
- 2. Sample i.i.d. $Y_i \sim F_Y$, independent of the X_i
- 3. Sample i.i.d. $U_i \sim C$, $U_i \in \left[0,1\right]^2$, independent of the X_i and Y_i

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) (2,3)	
6.3	4	22.8	2	(0.5, 0.9) (3,4)	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	

Let
$$n=4$$

- 1. Sample i.i.d. $X_i \sim F_X$,
- 2. Sample i.i.d. $Y_i \sim F_V$, independent of the X_i
- 3. Sample i.i.d. $U_i \sim C$, $U_i \in \left[0,1\right]^2$, independent of the X_i and Y_i

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) (2,3)	
6.3	4	22.8	2	(0.5, 0.9) (3,4)	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	
				_ [

Let
$$n=4$$

- 1. Sample i.i.d. $X_i \sim F_X$,
- 2. Sample i.i.d. $Y_i \sim F_Y$, independent of the X_i
- 3. Sample i.i.d. $U_i \sim C$, $U_i \in \left[0,1\right]^2$, independent of the X_i and Y_i

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) (2,3)	
6.3	4	22.8	2	(0.5, 0.9) (3,4)	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	
				I	

Reordering algorithm: Reordering

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) (2,3)	
6.3	4	22.8	2	(0.5, 0.9) (3,4)	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	

Samples of
$$\begin{pmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ \end{pmatrix}$$

Reordering algorithm: Reordering

$X_i \sim F_X$		$Y_i \sim F_Y$		$U_i \sim C$	
sample	rank	sample	rank	sample rank	
3.1	2	67.9	4	(0.4, 0.7) (2,3)	
6.3	4	22.8	2	(0.5, 0.9) (3,4)	
1.4	1	12.2	1	(0.1, 0.3) (1,1)	
5.9	3	43.7	3	(0.7, 0.4) (4,2)	

Samples of
$$\begin{pmatrix} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{pmatrix}$$
 (,)

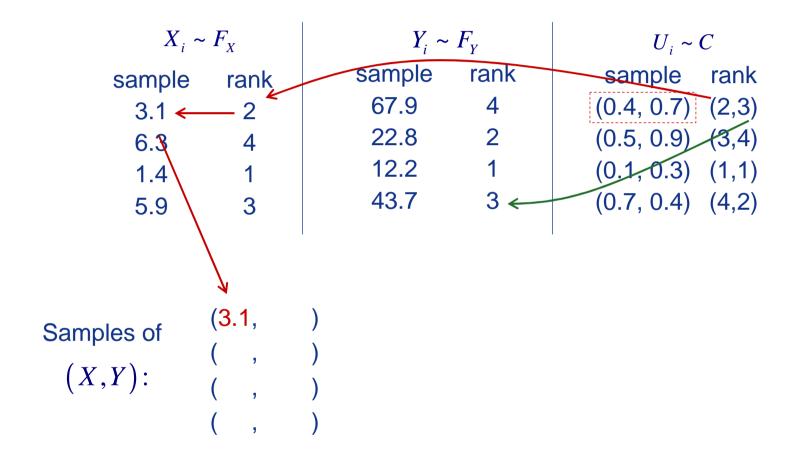
$X_i \sim$	F_X	$Y_i \sim$	F_{Y}	$U_i \sim C$
sample	rank, _	sample	rank	sample rank
3.1	2	67.9	4	(0.4, 0.7) $(2,3)$
6.3	4	22.8	2	(0.5, 0.9) (3,4)
1.4	1	12.2	1	(0.1, 0.3) (1,1)
5.9	3	43.7	3	(0.7, 0.4) (4,2)

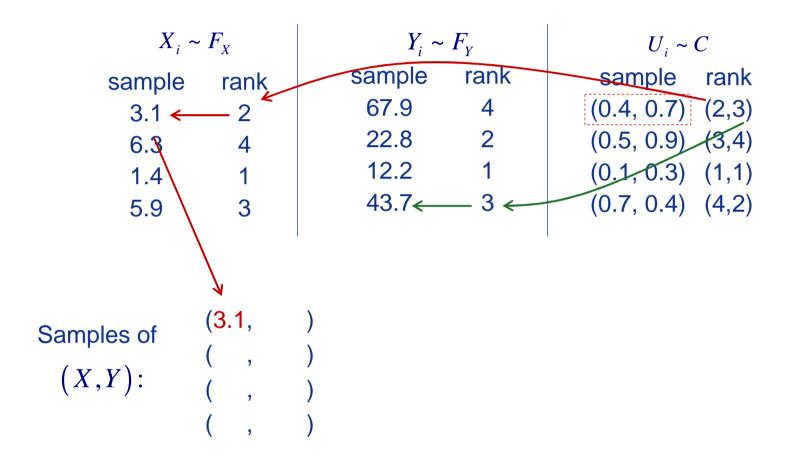
Samples of
$$\begin{pmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ \end{pmatrix}$$

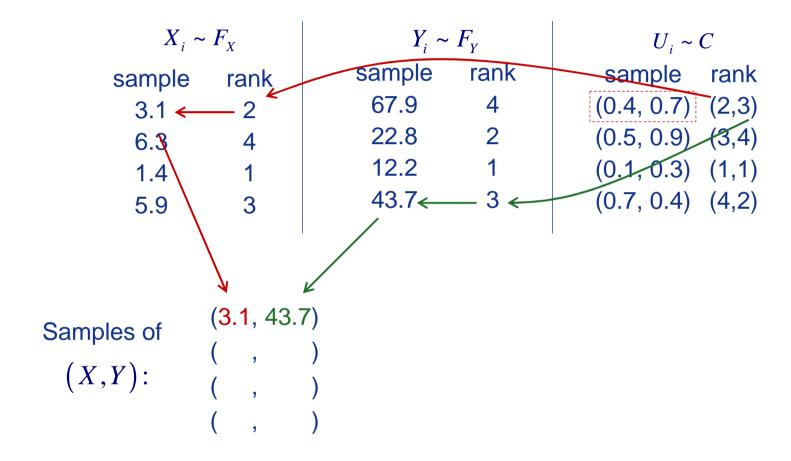
$X_i \sim$	F_X	$Y_i \sim$	$F_{\scriptscriptstyle Y}$	$U_i \sim C$
sample	rank _	sample	rank	sample rank
3.1 ←	<u> </u>	67.9	4	(0.4, 0.7) $(2,3)$
6.3	4	22.8	2	(0.5, 0.9) (3,4)
1.4	1	12.2	1	(0.1, 0.3) (1,1)
5.9	3	43.7	3	(0.7, 0.4) (4,2)

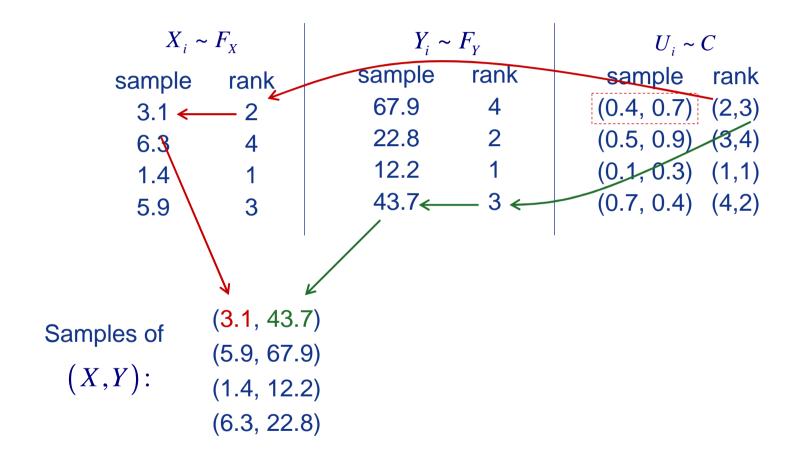
Samples of
$$\begin{pmatrix} & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ \end{pmatrix}$$

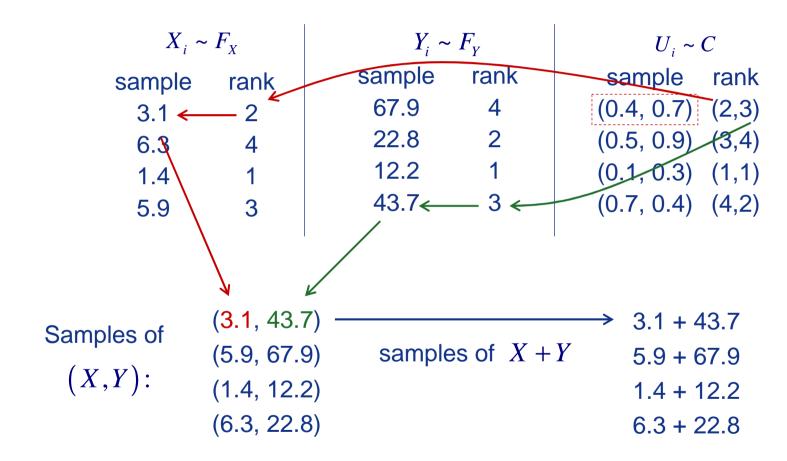
X_{i}	$\sim F_{X}$	$Y_i \sim$	F_{Y}	$U_i \sim C$
sample	rank	sample	rank	sample rank
	2	67.9	4	(0.4, 0.7) $(2,3)$
6.3	4	22.8	2	(0.5, 0.9) (3,4)
1.4	1	12.2	1	(0.1, 0.3) (1,1)
5.9	3	43.7	3	(0.7, 0.4) (4,2)
Samples of (X,Y) :	(3.1, (, , (, , ,))))		

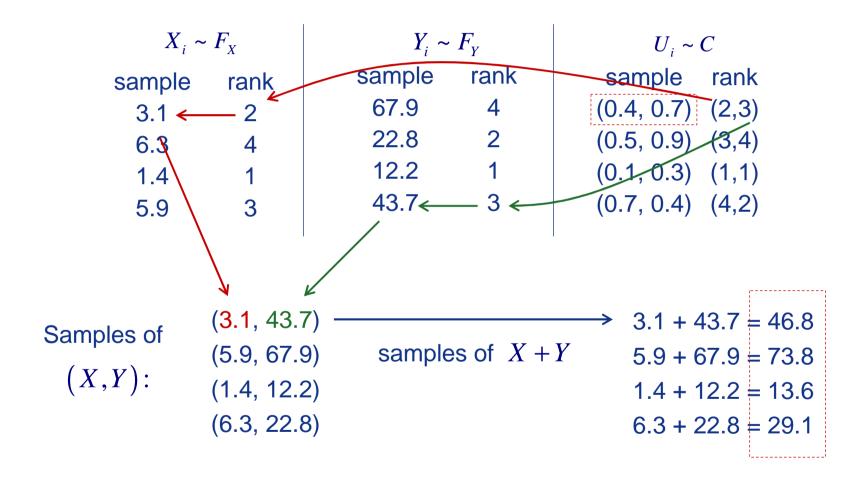












Reallocation in Practice

Initial assumptions:

- We know (or have estimated) the marginal distributions
- We know (or have estimated) the copula that describes the dependencies
- We can simulate *n* values from each marginal
- We can apply the dependency described by the copula through a reordering algorithm

We have *n* scenarios for the Total P&L, with all the information about the marginals that created those scenarios

Standalone Approach in practice

T	CF	REDI	Т	PREI	N NO	NCAT	PREM	I NA	ГСАТ	
Base Sce	narit Total	Base Sce	nario)	Base So	enari	io	Base Sc	enari)
MC_1	- 383 383	MC 1	-	2,349	MC_1	-	284,997	MC_1	-	24,394
MC 2	66,643	MC 2		4,539	MC 2		217,133	MC 2		21,487
мс з	444,444	MC 3		7,491	мс з	1	66,689	мс з		5,481
MC 4	407,828	MC 1		6,507	MC 4	-	73,492	MC_4		11,180
MC_5	185,757	MC_5	-	381	MC_5	-	73,747	MC_5	-	23,569
MC 6	- 573,607	MC 6	,	13,173	MC 6		147,894	MC 6	-	48,744
MC_7	93,736	MC_7		3 555	MC_7		86,124	MC_7		13,541
MC_8	- 146,126	MC_8	-	3,333	MC_8		82,130	Mc 8	-	30,636
MC_9	-1,770,874	MC_9	-	82,055	MC_9	-	330,367	MC_9	-	12,234
MC_10	- 291,491	MC_10		4,539	MC_10	-	390,677	MC_10		17,539
MC_11	- 371,803	MC_11	-	13,173	MC_11	-	20,013	MC_11		30,749
MC_12	135,088	MC_12		1,587	MC_12		304,842	MC_12	-	6,347
MC_13	446,603	MC_13		4,539	MC_13		160,312	MC_13	-	18,983
MC_14	790,223	MC_14		9,459	MC_14		348,323	MC_14		15,415
MC_15	652,424	MC_15		7,491	MC_15		175,594	MC_15	-	32,936
MC_16	1,194,650	MC_16		9,459	MC_16		196,472	MC_16	-	19,309
MC_17	- 620,535	MC_17	-	12,189	MC_17	-	103,331	MC_1/	-	578
MC_18	206,989	MC_18		5,523	MC_18		172,769	MC_18		7,663
MC_19	- 352,858	MC_19		7,491	MC_19	-	201,352	MC_19		18,581
MC_20	421,706	MC_20		1,587	MC_20		146,941	MC_20	-	9,109
MC_21	94,541	MC_21		7,491	MC_21		21,552	MC_21		11,711
MC_22	- 24,103	MC_22	-	4,317	MC_22		213,096	MC_22	-	53,112
MC_23	- 289,611	MC_23	-	9,237	MC_23		128,032	MC_23	-	12,162
MC_24	116,418	MC_24	-	381	MC_24		255,703	MC_24	-	21,580
MC_25	516,682	MC_25		6,507	MC_25		139,504	MC_25		24,488
MC_26	- 769,784	MC_26		1,587	MC_26	-	179,759	MC_26		15,845
MC_27	269,004	MC_27		4,539	MC_27	-	243,404	MC_27		14,115
MC_28	760,991	MC_28		9,459	MC_28		86,041	MC_28		11,891
MC_29	10,713	MC_29		603	MC_29	-	234,246	MC_29	-	18,798
MC_30	- 554,817	MC_30	-	381	MC_30	-	106,315	MC_30		15,249
MC_31	-1,232,559	MC_31	-	65,327	MC_31	-	213,586	MC_31	-	26,133
MC_32	- 142,095	MC_32		1,587	MC_32	-	253,176	MC_32	-	30,569
MC_33	796,201	MC_33		10,443	MC_33		329,991	MC_33		25,961
MC_34	- 96,648	MC_34		1,587	MC_34	-	213,490	MC_34		11,117
MC_35	- 17,751	MC_35		3,555	MC_35		84,257	MC_35	-	6,160
MC_36	135,934	MC_36		4,539	MC_36		99,604	MC_36		4,951
MC_37	670,321	MC_37		9,459	MC_37		195,116	MC_37		15,487
MC_38	- 420,353	MC_38		4,539	MC_38	-	15,992	MC_38	-	14,597
MC_39	357,940	MC_39		7,491	MC_39		49,986	MC_39		22,547
MC_40	- 230,699	MC_40		3,555	MC_40		190,233	MC_40	-	7,398
MC 41	924 739	I MC ⊿1		∆ 539	MC 41		349 147	MC ⊿ 1		7 45 3

Choose a default risk measure ρ

Calculate the standalone RC for each risk and for the total

 $RC_i = \rho(X_i)$ for each i RC_{TOT} as sum of RC_i

$$\Phi_i = RC_i / RC_{TOT}$$

Reallocation of Risk Capital in practice

TOTAL CREDIT	PREM NONCAT	PREM NATCAT	TOTAL	CREDIT	PREM NONCAT	PREM NATCAT
Base Scenario Total Base Scenario	Base Scenario	Base Scenario	Base Scenario Total	Base Scenario	Base Scenario	Base Scenario
MC_1 - 389,383 MC_1 - 2,349	MC_1 - 284,997	MC_1 - 24,394	MC_9 -1,770,874	MC_9 - 82,055	MC_9 - 330,367	MC_9 - 12,234
MC_2 66,649 MC_2 4,539	MC_2 217,133	MC_2 21,487	MC_31 -1,232,559	MC_31 - 65,327	MC_31 - 213,586	MC_31 - 26,133
MC_3 444,444 MC_3 7,491	MC_3 66,689	MC_3 5,481	MC_42 - 780,867	MC_42 - 31,870	MC_42 109,577	MC_42 - 80,510
MC 4 407,828 MC 4 6,507	MC 4 - 173,492	MC_4 11,180	MC_26 - 769,784	MC_26 1,587	MC_26 - 179,759	MC_26 15,845
MC 5 185,757 MC 5 - 381	MC 5 - 73,747	MC 5 - 23,569	MC_17 - 620,535	MC_17 - 12,189	MC_17 - 103,331	MC_17 - 578
MC_6 - 573,607 MC_6 - 13,173	MC 6 147,894	MC 6 - 48,744	MC_6 - 573,607	MC_6 - 13,173	MC_6 147,894	MC_6 - 48,744
MC 7 93,736 MC 7 3,555	MC 7 86,124	MC 7 13,541	MC_30 - 554,817	MC_30 - 381	MC_30 - 106,315	MC_30 15,249
MC_8 - 146,126 MC_8 - 3,333	MC_8 82,130	MC ⁻⁸ - 30,636	MC_38 - 420,353	MC_38 4,539	MC_38 - 15,992	MC_38 - 14,597
MC 9 -1,770,874 MC 9 - 82,055	MC 9 - 330,367	MC 9 - 12,234	MC_1 - 389,383	MC_1 - 2,349	MC_1 - 284,997	MC_1 - 24,394
MC 10 - 291,491 MC 10 4,539	MC 10 - 390,677	MC 10 17,539	MC_11 - 371,803	MC_11 - 13,173	MC_11 - 20,013	MC_11 - 30,749
MC 11 - 371,803 MC 11 - 13,173	MC 11 - 20,013	MC 11 - 30,749	MC_19 - 352,858	MC_19 7,491	MC_19 - 201,352	MC_19 18,581
MC_12	MC 12 304,842	MC_12 - 6,347	MC_10 - 291,491	MC_10 4,539	MC_10 - 390,677	MC_10 17,539
MC 13 446,603 MC 13 4,539	MC 13 160,312	MC 13 - 16,983	MC_23 - 289,611	MC_23 - 9,237	MC_23 128,032	MC_23 - 12,162
MC_14 790,223 MC_14 9,459	MC_14 348,323	MC 14 15,415	MC_40 - 230,699 MC 8 - 146,126	MC_40 3,555	MC_40 190,233	MC_40 - 7,398
MC_15 652,424 MC_15 7,491	MC 15 175,594	MC 15 - 32,936	MC_8 - 146,126 MC_32 - 142,095	MC_8 - 3,333 MC 32 1,587	MC_8 82,130 MC 32 - 253,176	MC_8 - 30,636 MC 32 - 30,569
MC 16 1,194,650 MC 16 9,459	MC 16 196,472	MC 16 - 19,309	MC_32 - 142,095 MC_34 - 96,648	MC 34 1,587	MC_32 - 253,176 MC_34 - 213,490	MC 34 - 30,569
MC_17 - 620,535 MC_17 - 12,189	MC_17 - 103,331	MC_17 - 578	C_44 - 58,980	MC 44 2,571	MC 44 126,183	MC 44 - 12,032
MC 18 206,989 MC 18 5,523	MC 18 172,769	MC 18 7,663	MC_22 - 24,103	MC 22 - 4,317	MC 22 213,096	MC 22 - 53,112
MC 19 - 352,858 MC 19 7,491	MC 19 - 201,352	MC 19 18,581	MC 35 - 17,751	MC 35 3,555	MC 35 84,257	MC 35 - 6,160
MC 20 421,706 MC 20 1,587	MC 20 146,941	MC 20 - 9,109	MC_29 10,713	MC 29 603	MC 29 - 234,246	MC 29 - 18,798
MC 21 94,541 MC 21 7,491	MC 21 21,552	MC 21 11,711	MC 2 66,649	MC 2 4,539	MC 2 217,133	MC 2 21,487
MC 22 - 24,103 Mo 22 - 4,317	MC 22 213,096	MC 22 - 53,112	MC 7 93,736	MC 7 3,555	MC 7 86,124	MC 7 13,541
MC_23 - 289,611 MC_23 - 9,237	MC_23 128,032	MC_23 - 12,162	MC_21 94,541	MC_21 7,491	MC_21 21,552	MC_21 11,711
MC_24 116,418 MC_24 381	MC 24 255,703	MC 24 - 21,580	MC_24 116,418		MC 24 255,703	MC 24 - 21,580
MC 25 516,682 MC 25 6,507	MC 25 139,504	MC 25 24,488	MC 12 135,088	MC 12 1,587	MC 12 304,842	MC 12 - 6,347
MC 26 - 769,784 MC 26 1,387	MC 26 - 179,759	MC_26 15,845	MC_36 135,934	MC_36 4,539	MC_36 99,604	MC_36 4,951
MC_27 269,004 MC_27 4,539	MC_27 - 243,404	MC 27 14,115	MC_5 185,757	MC_5 - 381	MC_5 - 73,747	MC_5 - 23,569
MC 28 760,991 MC 28 9,459	MC 28 86,041	MC 28 11,891	MC_18 206,989	MC_18 5,523	MC_18 172,769	MC_18 7,663
MC 29 10,713 MC 29 603	MC 29 - 234,246	MC 29 - 18,798	MC_27 269,004	MC_27 4,539	MC_27 - 243,404	MC_27 14,115
MC 30 - 554,817 MC 30 - 381	MC 30 - 106,315	MC 30 15,249	MC_43 347,359	MC_43 8,475	MC_43 - 9,981	MC_43 517
MC_31 -1,232,559 MC_31 - 65,327	MC_31 - 213.586	MC 31 - 26,133	MC_39 357,940	MC_39 7,491	MC_39 49,986	MC_39 22,547
MC 32 - 142,095 MC 32 1,587	MC 32 - 253,176	MC 32 - 30,569	MC_45 376,026		MC_45 - 6,839	MC_45 - 6,385
MC_33 796,201 MC_33 10,443	MC_32 - 293,178 MC_33 329,991	MC_32 - 30,569 MC_33 25,961	MC_4 407,828		MC_4 - 173,492	MC_4 11,180
MC 34 - 96,648 MC 34 1,587	MC 34 - 213,490	MO_00 Z0,001 4	MC 20 421.706		MC_20 146,941	MC_20 - 9,109
MC 35 - 17,751 MC 35 3,555	MC 35 84,257	Final state	200000	3 7,491	MC_3 66,689	MC_3 5,481
MC_36	MC_36 99,604	First step: F	keoraer	13 4,539	MC_13 160,312	MC_13 - 16,983
MC_36 135,934 MC_36 4,539 MC_37 670,321 MC_37 9,459	MC 37 195,116	: o. o.op		25 6,507	MC_25 139,504	MC_25 24,488
MC_37 670,321 MC_37 9,459 MC_38 - 420,353 MC_38 4,539	MC 38 - 15,992	TOTAL COOK	ANIAA II	15 7,491	MC_15 175,594	MC_15 - 32,936
		TOTAL scer	iarios ir	37 9,459	MC_37 195,116	MC_37 15,487 MC 39 11.991
MC_39 357,940 MC_39 7,491				DR GIALU	ion: 28 - 86 HM1	MC 79 11 901
MC_40 - 230,699 MC_40 3,555 MC_41 924.739 MC_41 4.539	MC_40 190,233 MC_41 349.147	l order to fin	d worst			
mm. a. MZZZYMINAL AL ANSM	пп. дт	order to fin	u wuiSt			
		ones				
		Ulles				

Covariance Approach in practice

var(X)

$var(X)$ _	cov(X,X)	_
$\overline{\operatorname{var}(X)}$	$\overline{\operatorname{var}(X)}$	_

$$= \frac{\operatorname{cov}\left(\sum_{i} X_{i}, \sum_{i} X_{i}\right)}{\operatorname{var}\left(\sum_{i} X_{i}\right)} =$$

$$= \frac{\sum_{i} \text{cov}\left(X_{i}, \sum_{i} X_{i}\right)}{\text{var}\left(\sum_{i} X_{i}\right)}$$

$$\Phi_{i} = \operatorname{cov}(X_{i}, X) / \operatorname{var}(X)$$

Т	OTA	L		REDI		PREM	A NO	PREM NONCAT			TCAT
Base Sce	nario	Total	Base Sc	Base Scenario			Base Scenario			enari	0
MC_9	-1	,770,874	1/IC_9	-	82,05	MC_9	-	330,367	MC_9	-	12,234
MC_31	-1	,232,559	MC_31	-	65,32	MC_31	-	213,586	MC_31	-	26,133
MC_42	-	780,867	MC_42	-	31,87	MC_42		109,577	MC_42	-	80,510
MC_26	-	769,784	MC_26		1,587	MC_26	-	179,759	MC_26		15,845
MC_17	-	620,535	MC_17	-	12,18	MC_17	-	103,331	MC_17	-	578
MC_6	-	573,607	MC_6	-	13,17	MC_6		147,894	MC_6	-	48,744
MC_30	-	554,817	MC_30	-	38 <mark>1</mark>	MC_30	-	106,315	MC_30		15,249
MC_38	-	420,353	MC_38		4,53	MC_38	-	15,992	MC_38	-	14,597
MC_1	-	389,383	MC_1	-	2,34	MC_1	-	284,997	MC_1	-	24,394
MC_11	-	371,803	MC_11	-	13,17	MC_11	-	20,013	MC_11	-	30,749
MC_19	-	352,858	MC_19		7,49	MC_19	-	201,352	MC_19		18,581
MC_10	-	291,491	MC_10		4,53	MC_10	-	390,677	MC_10		17,539
MC_23	-	289,611	MC_23	-	9,237	MC_23		128,032	MC_23	-	12,162
MC_40	-	230,699	MC_40		3,55	MC_40		190,233	MC_40	-	7,398
MC_8	-	146,126	MC_8	-	3,33	MC_8		82,130	MC_8	-	30,636
MC_32	-	142,095	MC_32		1,587	MC_32	-	253,176	MC_32	-	30,569
MC_34	-	96,648	MC_34		1,587	MC_34	-	213,490	MC_34		11,117
MC_44	-	58,980	1/IC_44		2,57	MC_44		126,183	MC_44	-	12,032
MC_22	-	24,103	MC_22	-	4,317	MC_22		213,096	MC_22	-	53,112
MC_35	-	17,751	MC_35		3,55	MC_35		84,257	MC_35	-	6,160
MC_29		10,713	MC_29		60	MC_29	-	234,246	MC_29	-	18,798

 $cov(X_i,X)$

Decomp VaR Approach in practice

Take the nth scenario, corresponding to the selected alpha percentile

	٦	TOTAL	С	REDI	Γ	PREM	NONC	ΑT	PREM	I NAT	CAT
	Base Sc	enario Total	Base Sc	enario)	Base Sc	enario		Base Scenario		
	MC_9	-1,770,874	MC_9	-	82,055	MC_9	- 33	367,06	MC_9	-	12,234
	MC_31	-1,232,559	MC_31	-	65,327	MC_31	- 21	3,586	MC_31	-	26,133
	MC_42	- 780,867	MC_42	-	31,870	MC_42	10	9,577	MC_42	-	80,510
	MC_26	- 769,784	MC_26		1,587	MC_26	- 17	9,759	MC_26		15,845
	MC_17	- 620,535	MC_17	-	12,189	MC_17	- 10	3,331	MC_17	-	578
	MC_6	- 573,607	MC_6	-	13,173	MC_6	14	17,894	MC_6	-	48,744
	MC_30	- 554,817	MC_30	-	381	MC_30	- 10	6,315	MC_30		15,249
	MC_38	- 420,353	MC_38		4,539	MC_38	- 1	5,992	MC_38	-	14,597
	MC_1	- 389,383	MC_1	-	2,349	MC_1	- 28	34,997	MC_1	-	24,394
	MC_11	- 371,803	MC_11	-	13,173	MC_11	- 2	20,013	MC_11	-	30,749
	MC_19	- 352,858	MC_19		7,491	MC_19	- 20	352, 11	MC_19		18,581
	MU. TU	- 291,491	7/C_10		4,539	MIL. III	- 35	U,b//	NIC_10		17,539
	MC_23	- 289,611	MC_23	-	9,237	MC_23		28,032	NIC_23	-	12,162
Ľ	MC 48	- 238,699	_			MC 48		0.233	<u>N</u> IC_48	-	7,398
	MC_8	146,126	MC_8	-	3,333	MC_8		32,130	MC_8	-	30,636
	MC_32	- 142,095	MC_32		1,587	MC_32		3,176	MC_32	-	30,569
	MC_34	- \ 96,648	MC_34		1,587	MC_34	•	3,490	MC_34		11,117
	MC_44	- \58,980	MC_44		2,571	MC_44	12	26,183	MC_44	-	12,032
	MC_22	- 24,103	MC_22	-	4,317	MC_22	21	3,096	MC_22	-	53,112
	MC_35	- 17,751	MC_35		3,555	MC_35	18	257, 34	MC_35	-	6,160
	MC_29	10,713	MC_29		603	MC_29	- 4	246, 34	MC_29	-	18,798
		1					1	٧			
		VaR	R(X)			De	ecom	pVa	$R(X_i)$		

 $\Phi_i = DecompVaR(X_i) / VaR(X)$

VaR HD Approach in practice

Basically, the VaR_HD is an estimator of the VaR, which consist in a weighted average using the "HD weights"

 $\Phi_{i} = VaR_HD(X_{i}) / VaR_HD(X)$

	Т	ОТА	L	CREDIT			PREM	NONCAT	PREM NATCAT		
	Base Sce	enario	o Total	Base Sc	enario)	Base Sc	enario	Base Scenario		
	MC_9	-1	,770,874	MC_9	-	82,055	MC_9	- 330,367	MC_9	-	12,234
	MC_31	-1	,232,559	MC_31	-	65,327	MC_31	- 213,586	MC_31	-	26,133
	MC_42	-	780,867	MC_42	-	31,870	MC_42	109,577	MC_42	-	80,510
	MC_26	-	769,784	MC_26		1,587	MC_26	- 179,759	MC_26		15,845
	MC_17	-	620,535	MC_17	-	12,189	MC_17	- 103,331	MC_17	-	578
	MC_6	-	573,607	MC_6	-	13,173	MC_6	147,894	MC_6	-	48,744
Г	MC_30	-	554,017	MC_30	-	38 <mark>1</mark>	MC_30	- 108,315	MC_30		15,249
	MC_38	-	420,353	MC_38		4,539	MC_38	- 15,992	MC_38	-	14,597
	MC_1	-	389,383	MC_1	-	2,34 <mark>9</mark>	MC_1	- 284,997	MC_1	-	24,394
	MC_11	-	371,803	MC_11	-	13,17 <mark>3</mark>	MC_11	- 20,013	MC_11	-	30,749
	MC_19	-	352,858	MC_19		7,491	MC_19	- 201,352	MC_19		18,581
١,	MC_10		291,491	MC_10		4,539	MC_10	<u>- 390,677</u>	MC_10		17,539
П	MC_23	-	289,611	MC_23	-	9,237	MC_23	128,032	MC_23	-	12,162
ľ	MC_40	-	238,699	MC_40		- 3,55<mark>5</mark>-	MC_40	198,233	MC_48	-	7,398
	MC_8	-	146,126	MC_8	-	3,33	MC_8	82,130	MC_8	-	30,636
	MC_32	-	142,095	MC_32		1,587	MC_32	- 253,176	MC_32	-	30,569
	MC_34	-	96,648	MC_34		1,587	MC_34	- 213,490	MC_34		11,117
	MC_44	-	58,980	MC_44		2,571	MC_44	126,183	MC_44	-	12,032
-	WC_22	-	24,103	MC_22	-	4,317	WC_22	213,096	MC_22	-	53,112
	MC_35	-	17,751	MC_35		3,555	MC_35	84,257	MC_35	-	6,160
	MC_29		10,713	MC_29		603	MC_29	- 234,246	MC_29	-	18,798

 $VaR_HD(X) =$ $E(X \mid \text{ selected scenarios} \mid \text{ around } VaR(X))$ $VaR_HD(X_i) =$ $E(X_i | \text{ selected scenarios}$ around VaR(X))

TVaR Approach in practice

Consider *n* (alphadriven) scenarios

$$\frac{TVaR(X)}{TVaR(X)} = \frac{TVaR\left(\sum_{i} X_{i}\right)}{TVaR(X)} = \frac{\sum_{i} TVaR(X_{i})}{TVaR(X)}$$

$$\Phi_i = TVaR(X_i) / TVaR(X)$$

Т	ота	ıL	C	REDI	Γ	PREM	NON	CAT	PREM NATCAT		
Base Sce	enario	o Total	Base Sc	enario)	Base Scenario			Base Scenario		
MC_9	-1	,770,874	MC_9	-	82,05	MC_9	- 3	30,367	MC_9	-	12,234
MC_31	-1	,232,559	MC_31	-	65,327	MC_31	- 2	13,586	MC_31	-	26,133
MC_42	-	780,867	MC_42	-	31,87 <mark>0</mark>	MC_42		09,577	MC_42	-	80,510
MC_26	-	769,784	_		1,587	MC_26	- 1	79,759	MC_26		15,845
MC_17	-	620,535	_	-	12,18	MC_17	- 1	03,331	MC_17	-	578
MC_6	-	573,607	MC_6	-	13,17 <mark>3</mark>	MC_6	1	47,894	MC_6	-	48,744
MC_30	-	554,817	MC_30	-	38 <mark>1</mark>	MC_30	- 1	06,315	MC_30		15,249
MC_38	-	420,353	MC_38		4,53 <mark>9</mark>	MC_38	-	15,992	MC_38	-	14,597
MC_1	-	389,383	MC_1	-	2,34 <mark>9</mark>	MC_1	- 2	84,997	MC_1	-	24,394
MC_11	-	371,803	_	-	13,17 <mark>3</mark>	MC_11	-	20,013	MC_11	-	30,749
MC_19	-	352,858	_		7,49 <mark>1</mark>	MC_19	- 2	01,352	MC_19		18,581
MC_10	-	291,491	_		4,539	MC_10	- 3	90,677	MC_10		17,539
MC_23	-	289,611	_	-	9,237	MC_23	1	28,032	MC_23	-	12,162
MC_40	-	230,699	_		3,55	MC_40		90,233	MC_40	-	7,398
MC_8	-	146,126	MC_8	-	3,33	MC_8		82,130	MC_8	-	30,636
MC_32	-	142,095	_		1,587	MC_32	- 2	53,176	MC_32	-	30,569
MC_34	-	96,648	_		1,587	MC_34	- 2	13,490	MC_34		11,117
MC_44	-	58,980	_		2,57 <mark>1</mark>	MC_44	1	26,183	MC_44	-	12,032
MC_22	-	24,103	_	-	4,317	MC_22	2	13,096	MC_22	-	53,112
MC_35	-	17,751	MC_35		3,55	MC_35		84,257	MC_35	-	6,160
MC_29		10,713	MC_29		603	MC_29	- 2	34,246	MC_29	-	18,798

$$TVaR(X) = E(X \mid \text{ selected scenarios})$$

$$TVaR(X) = TVaR(X_i) = E(X | selected scenarios)$$
 $E(X_i | selected scenarios)$

Reallocation in Practice - comments

CONs of the Methodolo	gies described
Covariance Approach	Ok if we are restricted to a low number of sims, but we are not looking to the tails of the distribution, and therefore we could underestimate the RC reallocated to fat tailed marginals
Decomp VaR Approach	Too much volatility in the allocation, this method is not reliable
VaR HD Approach	Decent allocation method if we want to use the VaR for the total RC, but can show undesired effects (e.g. the diversifying allocation property is not always valid, especially for fat tailed distributions)
TVaR Approach	No cons? ☺

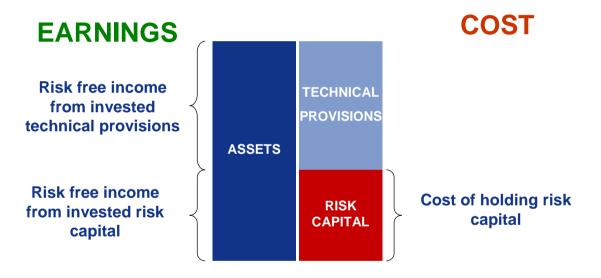
Contents

- 1 Introduction
- 2 P&C Insurance Risks
 - I. Reserve Risk
 - II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Consider a single P&C policy; its margin is generated by:

Technical profit = premium - loss - expenses 1 - CoR

...but often only the interest income is taken into account...



Opportunity cost = RISK FREE INCOME - COST OF RISK CAPITAL (CoC)

...so the idea is to rewrite the formula, taking into account also risk based opportunity cost with both interest income and cost of capital...

Why should be use risk based pricing?

(*) all figures are illustrative only, they don't represent actual capital charges under SII

Product A

- Observed CoR 100%
- Profit from investments 3%
- Allocated CoC 1%

Technical Profit: 0

With Financial Profit: 3%

With CoC: +2%

Product B

- Observed CoR 97%
- Profit from investments 1%
- Allocated CoC 5%

Technical Profit: 3%

With Financial Profit: 4%

With CoC: -1%

Product B, even it seems more profitable (on the technical side) than Product A, in practice lead the company to a loss...without RBP we run the risk of selling non profitable products!

(**) In this terms, for example, the Solvency 1 formula leads to a "constant" CoC of 18% * 6% (CoC) * 3 (duration) ~ 3%

We get an EVA (or Economic Combined Ratio) based approach:

$$EVA_{net} = \text{Prem}_{net} - \text{Losses}_{net} - \text{Expenses}_{net} - \text{CoC}_{net} + \text{RF}_{net}$$

Underlining the Reinsurance EVA, a risk-based measure of the profitability of the reinsurance, we get:

$$EVA_{net} = \text{Prem}_{gross} - \text{Losses}_{gross} - \text{Exp}_{gross} - \text{CoC}_{gross} + \text{RF}_{gross} + \text{Reinsurance}_{EVA}$$

Where:

$$Reinsurance_{EVA} = Losses_{ceded} + Comm + CoC_{released} - Prem_{ceded} - RF_{ceded}$$

If we divide the previous formula by the Gross Earned Premiums, we obtain:

$$\frac{EVA_{net}}{\text{Prem}_{gross}} = 1 - \text{LoR}_{gross} - \text{ExR}_{gross} - \text{CoC}_{\text{Ratio}}_{gross} + \text{RF}_{\text{Ratio}}_{gross} + \text{Reinsurance}_{\text{EVA}}$$

Defined all quantities as function of the Gross LoR and given a net profit level, our aim is to find the target Gross LoR (via goal seek) that makes the equation go to zero:

$$1 - \mathbf{LoR}_{\mathbf{gross}} - \widehat{\mathbf{profit}}_{net} - \widehat{\mathbf{ExR}}_{gross} - \left(\mathbf{CoC}_{\mathbf{Ratio}}_{gross} + \mathbf{RF}_{\mathbf{Ratio}}_{gross} + \mathbf{Reinsurance}_{\mathbf{Ratio}}_{EVA} \right) + 0$$

$$\mathbf{Function}(\mathbf{LoR})$$

In this way, setting for example the profit = 0, we get a "break even" CoR, that could help in business steering

An example of application (no reinsurance):

Product A (Property Non-Cat)

- Profit ratio set at 5%
- Rf ratio set at 2%
- CoC ratio set as 1%

Traditional View

Target CoR: 95% (97% if we consider financial result)

Economic View

Target CoR: 95% + 2% (Rf) - 1% (CoC) = 96%

Product B (Property w/Cat)

- Profit ratio set at 5%
- Rf ratio set at 2%
- CoC ratio set as 10%

Traditional View

Target CoR: 95% (97% if we consider financial result)

Economic View

Target CoR: 95% + 2% (Rf) - 10% (CoC) = 87%

Even if the product seem similar from a technical perspective, on an economic basis they lead to different conclusions; also Reinsurance could be used strategically!

Taking again the EVA formula ...

$$1 - \mathbf{LoR_{gross}} - \widehat{\mathsf{profit}}_{net} - \widehat{\mathsf{ExR}}_{gross} - \mathsf{CoC_Ratio}_{gross} + \mathsf{RF_Ratio}_{gross} + \mathsf{Reinsurance_Ratio}_{EVA} \to 0$$

- Net profit ratio is set by the pricing department
- Expense ratio is set by the pricing department, in order to match pure
 premium with the assumptions on losses used by the pricing models
- RF ratio quite easy to estimate, based on cash-flow projection of losses and curve rate assumption (that are given inputs)
- Reinsurance EVA ratio it's similar (as logic) to the EVA for the insurer and we link it to RIO results / outputs (another presentation on the topic? ☺)
- At the moment, we have not explicitly considered the CoC released by the reinsurance (embedded in the CoC net)

In the next section we will focus on how we derive directly the **net** CoC Ratio

... how to set the capital charge?

STEP 1. RC allocation per LoB

- Done for business monitoring, quarterly reporting
- Volume measures are: technical provisions and planned premiums
- Losses (i.e. Reserves) have a "Retrospective view"

STEP 2. Pricing Estimate

- Done during design of new products
- Volume measures are: planned losses (i.e. LoR) and planned premiums
- Focus on a single (future) CY
- Market Risks out of scope

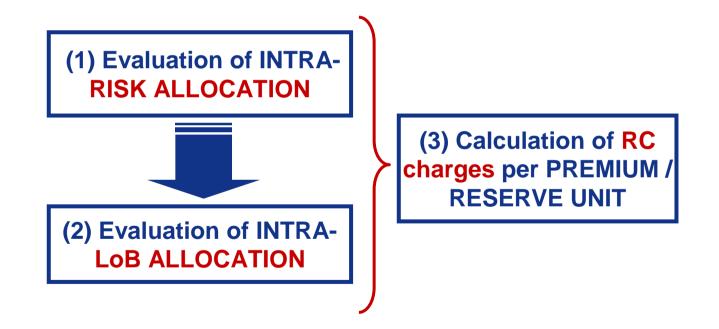
Determines the RC charges per Premium and Reserves units

RC charges should be coherent with the "Retrospective view"

In this way, we are assuming that new products will have underlying portfolios

STEP 1. RC allocation per LoB

We perform the following steps:



STEP 1. RC allocation per LoB => INTRA-RISK allocation

The aim is to assign the risk allocations to each risk type. Many methods could be chosen:

- 1. TVaR allocation @99%
- 2. Covariance allocation
- 3. Proportional method
- 4. Etc.

Everything depends on the model resolution, i.e. on how we derive the Capital Requirements (for example the Standard Formula don't allow a TVaR allocation)

STEP 1. RC allocation per LoB => INTRA-LoB allocation

The aim is to assign the risk allocations to each LoB.

			MAR	KET + CR RISK	CAT RISK	TERROR RISK	PREMIUM RISK	RESERVE RISK	BUSINESS RISK	OP RISK
	Standalon	e Risk		2,774,534	286,687	144,617	4,202,680	2,998,509	438,151	531,152
	Method 1			59.22%	19.96%	12.48%	33.27%	49.90%	23.36%	89.29%
LoB Name	Method 2			60.00%	60.00%	60.00%	60.00%	60.00%	60.00%	60.00%
PRODUCT 1	1	521,878		164,307	6,867	3,608	139,810	149,626	10,236	47,424
PRODUCT 2	i	263,713	X	82,153	8,011	-	69,905	74,813	5,118	23,712
PRODUCT 3	į	929,335	i i	377,905	4,578	3,608	83,886	344,140	6,142	109,076
PRODUCT 4	1	,460,153	1	558,643	2,861	3,608	209,715	508,729	15,354	161,243
PRODUCT 5	i	537,087	1	65,723	12,017	5,412	349,524	59,850	25,591	18,970
PRODUCT 6	\ \	524,345	-	98,584	7,439	-	279,619	89,776	20,472	28,455
PRODUCT 7	\	952,785	/	295,752	15,450	1,804	265,638	269,327	19,449	85,364

... and we are able to allocate the quarterly RC for monitoring / reporting purpose!!

STEP 1. RC allocation per LoB => RC Charges per Premium and Reserve Unit

Finally we get the risk capital charges, per Premium and Reserve (gross of reinsurance) units, depending on risk types

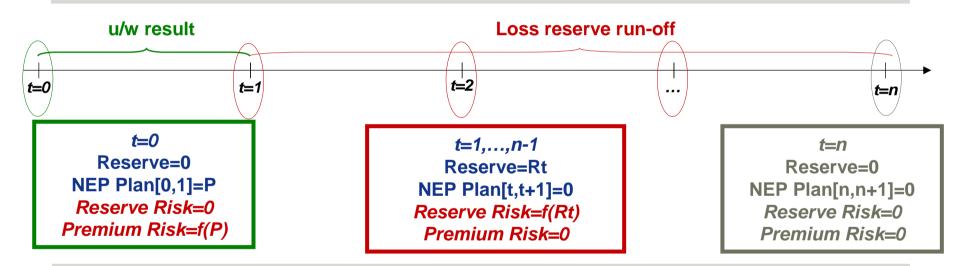
MARKET + CR RISK CAT RISK TERROR RISK PREMIUM RISK RESERVE RISK BUSINESS RISK OP RISK

LoB Name	/ Reserve	/ Premium	/ Premium	/ Premium	/ Reserve	/ Reserve	/ Reserve
PRODUCT 1	39%	0.92%	0.48%	18.63%	35.27%	2.41%	11.18%
PRODUCT 2	43%	2.18%	0.00%	18.99%	39.35%	2.69%	12.47%
PRODUCT 3	232%	0.58%	0.45%	10.58%	211.68%	3.78%	67.09%
PRODUCT 4	54%	0.27%	0.34%	19.47%	48.89%	1.48%	15.50%
PRODUCT 5	1%	0.28%	0.13%	8.26%	0.85%	0.36%	0.27%
PRODUCT 6	2%	1.24%	0.00%	46.59%	2.25%	0.51%	0.71%
PRODUCT 7	27%	3.23%	0.38%	55.52%	24.18%	1.75%	7.66%

Given those, we need additional portfolio run-off assumptions to derive the whole Cost of Capital related to the product

STEP 2. Pricing Estimate

- evaluation in *t*=0
- all the premiums earned only in t=0+ (no unearned premium reserves set)
- business runs off until the end of payments
- market risks out of scope



- > Premium risk arises only in t=0, due to the planning u/w for the period [0,1]
- > Reserve risk arises for all futures times (t=1 to t=n-1), until the full run-off of the reserve in t=n
- > Business and Operational Risks rise until complete run-off

STEP 2. Pricing Estimate

We project future reserves (using a DY pattern)

We apply the capital charges estimated at STEP (1)

SOLVENCY 2		Proxy of					
Technical Provisions	t = 0		1		2	3	4
BE	57.26%			23.86%	3.40%	1.05%	
NET CoC RATIO (MVM)	2.70%			1.13%	0.16%	0.05%	
LOSS TECHNICAL PROV	59.97%			24.98%	3.56%	1.10%	
	•						
Capital Requirement							
Market + Credit Risk	24.75%			10.31%	1.47%	0.45%	
Premium Risk Nat-Cat	2.18%			0.00%	0.00%	0.00%	
Premium Risk Terror	0.00%			0.00%	0.00%	0.00%	
Premium Risk Non-Cat	18.99%			0.00%	0.00%	0.00%	
Reserve Risk	0.00%			9.39%	1.34%	0.41%	
Business Risk	1.54%			0.64%	0.09%	0.03%	
Operational Risk	7.14%			2.98%	0.42%	0.13%	
	29.85%			13.01%	1.85%	0.57%	

PROs	
1. Immediate reconciliation with quarterly reporting	\checkmark
2. Easy to make sensitivity analyses, especially on diversification	\checkmark
3. Being all explicit, it's easy to communicate with other departments, in particular for risk explanation	✓

CONs	
1. Reserve Risk implicitly allows for diversification within AYs, but it	X
makes sense if we consider a new product for an existing portfolio	

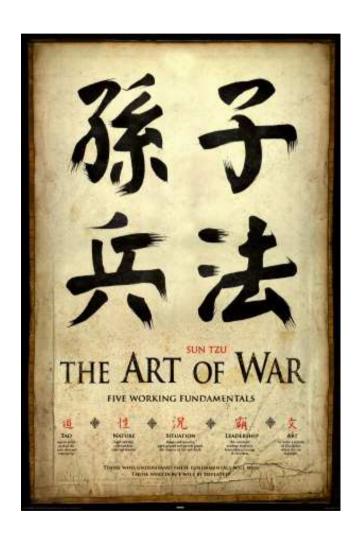
Contents

- 1 Introduction
- 2 P&C Insurance Risks
 - I. Reserve Risk
 - II. Premium Risk
- 3 How to add value to business
 - I. Risk Capital Aggregation (Theoretical)
 - II. Risk Capital Allocation (Theoretical)
 - III. Risk Capital Aggregation and Allocation (Practical)
 - IV. Risk Based Pricing
- 4 Q&A Session

Questions?

Allianz (11)

Conclusion



"Ora, la forma dell'operazione militare è come quella dell'acqua. L'acqua, quando scorre, fugge le altezze e precipita verso il basso. L'operazione militare vittoriosa evita il pieno e colpisce il vuoto. Come l'acqua adegua il suo movimento al terreno, La vittoria in guerra si consegue adattandosi al nemico. L'abile condottiero non segue uno shih prestabilito e non mantiene una forma immutabile.

Modificare la propria tattica adattandosi al nemico è ciò che si intende per 'divino'."

Thank you for your attention.

Disclaimer

These assessments are, as always, subject to the disclaimer provided below.

Employer's liability

Any views or opinions presented in this presentation are solely those of the author and do not necessarily represent those of the company. Employees of Allianz Italy are expressly required not to make defamatory statements and not to infringe or authorize any infringement of copyright or any other legal right by any type of communication. Any such communication is contrary to company policy and outside the scope of the employment of the individual concerned. The company will not accept any liability in respect of such communication, and the employee responsible will be personally liable for any damages or other liability arising.

Cautionary Note Regarding Forward-Looking Statements

The statements contained herein may include statements of future expectations and other forward-looking statements that are based on management's current views and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in such statements. In addition to statements which are forward-looking by reason of context, the words "may", "will", "should", "expects", "plans", "intends", "anticipates", "believes", "estimates", "predicts", "potential", or "continue" and similar expressions identify forward-looking statements.

Actual results, performance or events may differ materially from those in such statements due to, without limitation, (i) general economic conditions, including in particular economic conditions in the Allianz Group's core business and core markets, (ii) performance of financial markets, including emerging markets, and including market volatility, liquidity and credit events (iii) the frequency and severity of insured loss events, including from natural catastrophes and including the development of loss expenses, (iv) mortality and morbidity levels and trends, (v) persistency levels, (vi) the extent of credit defaults, (vii) interest rate levels, (viii) currency exchange rates including the Euro/U.S. Dollar exchange rate, (ix) changing levels of competition, (x) changes in laws and regulations, including monetary convergence and the European Monetary Union, (xi) changes in the policies of central banks and/or foreign governments, (xii) the impact of acquisitions, including related integration issues, (xiii) reorganization measures, and (xiv) general competitive factors, in each case on a local, regional, national and/or global basis. Many of these factors may be more likely to occur, or more pronounced, as a result of terrorist activities and their consequences.

No duty to update

The company assumes no obligation to update any information contained herein.

References for Risk Capital Allocation

- [1] Artzner, P., F. Delbaen, J. M. Eber, and D. Heath. (1999). "Coherent Measures of Risk". Mathematical Finance, 9 (3), June, 1999, pp. 203–228.
- [2] Acerbi, C., Tasche, D. (2002). "On the coherence of expected shortfall". *Journal of Banking and finance 26, pp. 1487-1503.*
- [3] Bargès, M., Cossette, H. and Marceau, E. (2009). "TVaR-based capital allocation with copulas". Working Papers, HAL.
- [4] Denault, M. (2001). "Coherent allocation of risk capital". *Journal of risk, 4(1):1–34.*
- [5] Dhaene, J., Tsanakas, A., Valdez, E. A. and Vanduffel, S. (2011). "Optimal Capital allocation Principles". *Journal of Risk and Insurance*, 78.
- [6] Hallerbach, W.G. (2003). "Decomposing Portfolio Value-at-Risk: A General Analysis". *The Journal of Risk 5/2, Winter, pp.1-18.*
- [7] Kalkbrenner, M., H. Lotter, and L. Overbeck. (2004). "Sensible and efficient capital allocation for credit portfolios". *Risk*, 17:S19-S24.

References for Risk Capital Allocation

- [8] Overbcek, L. (2004). "Spectral Capital Allocation". *In: Economic Capital Hrsg.: Das, A. Risk Books, London.*
- [9] Tasche, D. (2000). "Risk Contributions and Performance Measurement". Working paper, Munich University of Technology.
- [10] Tasche, D. (2004). "Allocating portfolio economic capital to sub-portfolios". *Economic Capital: A Practitioner Guide, pages 275-302. Risk Books.*
- [11] Tasche, D. (2007). "Euler Allocation: Theory and Practice". Working paper.
- [12] Urban, M., J. Dittrich, C. Kluppelberg, and R. Stolting. (2004). "Allocation of risk capital to insurance portfolios". *Blatter der DGVFM*, 26:389-406.
- [13] Yamai Y., T. Yoshiba. (2007). "Comparative analyses of expected shortfall and var: their estimation error, decomposition, and optimization". *IMES Discussion Paper No. 2001-E-12, Bank of Japan.*